
ENHANCING REMOTE SENSING BASED YIELD FORECASTING: APPLICATION TO 
WINTER WHEAT IN UNITED STATES  

 
B. Franch1,2, E. Vermote2, S. Skakun1,2, J.-C. Roger1,2, I. Becker-Reshef1, C. Justice1 

 
1Department of Geographical Sciences, University of Maryland, College Park MD 20742, USA 

2NASA Goddard Space Flight Center Code 619, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 
 
 

ABSTRACT 
 

Accurate and timely crop yield forecasts are critical for 
making informed agricultural policies and investments, as 
well as increasing market efficiency and stability. In Becker-
Reshef et al. (2010) and Franch et al. (2015) we developed 
an empirical generalized model for forecasting winter wheat 
yield. In this study we present a new model based on the 
extrapolation of the pure wheat signal (100% of wheat 
within the pixel) from MODIS data at 1km resolution and 
using the Difference Vegetation Index (DVI). The model has 
been applied to monitor the national and state level yield of 
winter wheat in the United States from 2001 to 2016. 
 

Index Terms— Agriculture, wheat, yield, MODIS 
 

1. INTRODUCTION 
 

Observations from the EOS/ MODIS sensors have 
several of the key qualities needed for global crop yield 
monitoring such as global, daily coverage at coarse spatial 
resolution (250m) and a suite of validated products. [1] 
developed an empirical but generalized crop yield model 
based on MODIS CMG (0.05 deg spatial resolution) data 
and applied it to Kansas and Ukraine. The model is based on 
the relationship between the Normalized Difference 
Vegetation Index (NDVI) value at the peak and the final 
yield value, corrected by the purity or the percentage of crop 
within the area studied. Later, [2] improved the timeliness of 
the model by including the Growing Degree Days (GDD) 
information. The model was applied satisfactorily (errors 
lower than 10%) at national level over the US, Ukarine and 
China. It also showed a good performance when applied to 
the AVHRR LTDR [3]. However, it is well known that the 
NDVI saturates when monitoring dense vegetation. In fact, 
recently, [4] when applying the [1] yield model to Landsat, 
showed that the NDVI saturates for yield values higher than 
4MT/ha. In this work we improve the yield model both at 
national and regional scale by improving its accuracy and 
response to extreme events. Compared with [1] method, this 
model is based on two major improvements: 

1. we develop a method to derive the wheat surface 
reflectance, that is, at AU level we estimate the signal as if 
the pixels were covered 100% by wheat.  

2. we apply the model to 1km resolution MODIS data 
instead of CMG spatial resolution. In this way, we are able 
to improve the yield estimation at subnational level.  

3. we consider a vegetation index (DVI) that is better 
correlated with the yield than the NDVI. 
 

2. STUDY AREA & DATA DESCRIPTION 
 
The study was performed for the US and Ukraine from 2001 
until 2016. The US is one of the main producers and 
exporters of wheat globally. Wheat is produced in almost 
every state in the United States and winter wheat varieties 
dominate US production, representing between 70 and 80% 
of the total.  The main class is Hard Red Winter Wheat, 
which is grown primarily in the Great Plains, with Kansas 
being the largest producing state.  
Ukraine, is another critical player in the global wheat 
market. Wheat is grown all across the country, although the 
central and southern regions are the key growing areas 
(Forest-Steppe and Steppe zones). About 95% of Ukraine 
wheat production is winter wheat, planted in the fall and 
harvested during July and early August of the following 
year. Generally, wheat is not irrigated in this country. 
Ukraine produces mostly the Hard Red Winter Wheat.  
In each country we estimate the wheat yield for each 
administrative unit. Thus, we work at different spatial scales 
depending on the data availability. In the case of the US, we 
work at county level and in the case of Ukraine the 
administrative units are oblasts.  
For the US, we use the official archive of county-level 
statistics on yield, area harvested, and production that is 
available from the USDA National Agricultural Statistics 
Service (NASS) Quick Stats database. For Ukraine, oblast-
level crop statistics were obtained from the State Statistical 
Committee of Ukraine (SSC) for winter wheat area 
harvested and yield.  
In this work the crop type masks are critical in order to 
isolate the wheat signal. For the US, we used crop type 
masks from the Cropland Data Layer (CDL) produced by 
NASS. We studied the main land surfaces surrounding the 
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wheat fields in the US and used a total of eight different 
crop type masks: winter wheat, spring wheat, corn, soybean, 
alfalfa, potato, grassland and forest. For Ukraine, we built 
winter wheat crop masks using an approach that we 
developed for MODIS [5] that allows automatic mapping of 
winter crops using a priori knowledge on crop calendar and 
without using reference (ground truth) data.   

 
3. METHODOLOGY 

 
3.1. Extrapolation of the wheat signal 
 

For each AU and for a given date, the total DVI signal 
from each pixel, i, can be written as the sum of the DVI 
signal from the wheat (DVIwheat) multiplied by the 
percentage of wheat within the pixel or wheat purity (Wpct) 
and the DVI from other surfaces within the pixel (DVIothers) 
multiplied by the remaining percentage (1- Wpct) (1).  

 
𝐷𝑉𝐼$ = 𝐷𝑉𝐼$,'()*+ ∙ 𝑊𝑝𝑐𝑡$ + 𝐷𝑉𝐼$,2+()34 ∙ 1 − 𝑊𝑝𝑐𝑡$  

 (1) 
Assuming that the DVIwheat and the DVIothers remain 

constant through an AU for a given date, the DVI of pixel i 
can be written as: 

 
𝐷𝑉𝐼$ = 𝐷𝑉𝐼'()*+ − 𝐷𝑉𝐼2+()34 ∙ 𝑊𝑝𝑐𝑡$ + 𝐷𝑉𝐼2+()34

 (2) 
Which has the structure of a linear regression function 

where the term 𝐷𝑉𝐼'()*+ − 𝐷𝑉𝐼2+()34  is the slope and 
𝐷𝑉𝐼2+()34  is the intercept and we can easily derive the DVI 
signal from the wheat. In the case of the US, where we 
consider a total of 8 different classes (plus the “others” 
contribution) equation 1 is written as: 

 
𝐷𝑉𝐼$ = 𝐷𝑉𝐼$,'()*+ ∙ 𝑊𝑝𝑐𝑡$ + 𝐷𝑉𝐼$,7238 ∙ 𝐶𝑝𝑐𝑡$ + ⋯+

𝐷𝑉𝐼$,2+()34 ∙ 1 − 𝑊𝑝𝑐𝑡$ − 𝐶𝑝𝑐𝑡$ − ⋯   (3) 
 
that also has structure of a linear regression function. 
 

 
Figure 1. Linear regression of the DVIi versus the wheat purity 
(Mpcti) through the Harper county for DOY 121 of 2008 

 
Figure 1 shows an example of the linear regression 

between the DVIi and the wheat purity, Wpcti, (black dots) 
the Day of the Year (DOY) 121 of 2008 in the Harper 
county (Kansas). 

 
3.2. Calibration of the yield model 
 
The U.S. 
We calibrated the yield model based on the years when the 
CDL covered all the country, that is from 2008 to 2016. We 
just consider in the study those states with pixel wheat 
purities higher than 40%. We divided the calibration of the 
model based on the different two main wheat classes within 
the states considered: SWW and HRW. 
Figure 2 left shows the HRW calibration over the states of 
Kansas, Colorado, Oklahoma, Montana, Nebraska, South 
Dakota and Texas. Figure 2 right shows the SWW 
calibration over the states of Washington, Oregon, Idaho, 
Illinois and Missouri. 
 

  
Figure 2. HRW (left) and SWW (right) calibration in the US using 
county level statistics from 2008 to 2016.  
 
Given that the Central Great Plains is prone to severe 
droughts we explored the use of the EF in the model. Figure 
3 left shows the validation at county level of the linear 
regression of the yield versus the DVI and Figure 3 right 
shows the county level validation of the same linear 
regression but including the EF. Kansas and Colorado show 
an improvement of the yield estimations when including the 
EF information while the other states don’t show any 
improvement. Thus, we just consider the EF on those two 
states. 
 

  
Figure 3. County level validation using just DVI (left) or using 
DVI and EF (right). 
 
Ukraine 
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In contrast to the US, there is limited information in Ukraine 
about the main planted wheat classes. However, given that 
the yield model developed in this study is based on the 
dependency of the DVI at the peak with the yield, we 
noticed that this dependency in Ukraine was different for the 
two main climatic regions. Thus, we divided the calibration 
into two major classes: the North and the South (Figure 4). 

 
Figure 4. Ukaine main climatic regions considered to calibrate the 
model. 
 
Figure 5 shows the calibration of the model for the north 
(a,b) and the south (c). The statistics showed that the north 
drastically increased the yields from 2 to 4MT/ha (2001-
2013) to 4 to 6 MT/ha (2014-2016). Possible causes of such 
increase were the chage of wheat variety or the improve of 
fertilizers. Therefore, we considered 2014 to 2016 as a 
different class of wheat for calibration purposes (Figure 5b) 
 

 
a) 

 
b) 

 
c) 

Figure 5. Calibration of the model in Ukraine. 
 

4. RESULTS 
 
The U.S. 

Figure 6 shows the state level error (top) and correlation 
(bottom) of the modeled yield when compared to the official 
statistics from 2001 to 2016. Generally, the model shows a 
good performance in the most important wheat producing 
states (Kansas, Oklahoma, Colorado) with low errors and 

high correlation. However, the figure shows worse results in 
Montana and  Texas mainly caused by the accuracy of the 
wheat mask during 2001-2006. 

 
Figure 6. Error (top) and correlation coefficient (bottom) at state 
level in the U.S. 
 
Figure 7 shows the national validation of the model in the 
U.S. The statistics show a good performance of the model 
with low error (4.68%) and good correlation coefficient 
(0.68) despite the low variability of the yield during the time 
series considered. 
 

 
Figure 7. U.S. national validation. 
 
Ukraine 
Figure 8 shows the oblast level error (top) and correlation 
(bottom) of the yield from 2001 to 2016. The southern 
oblasts, that are also the major wheat producing oblasts, 
show a better performance (lower errors and higher 
correlation) than the northern oblasts.  
 

 

Legend 

        Not  considered    
  

        North  (Plane-Polissya)  
 

        South  (Steppe) 
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Figure 8. Error (top) and correlation coefficient (bottom) at oblast 
level in Ukraine. 
 
Figure 9 shows the national validation of the model in 
Ukraine. The statistics show a low error of 6.48% and a 
really good correlation of 0.91, responding successfully to 
extreme events (high and low yields).  
 

 
 

5. CONCLUSIONS 
 

This study presents a new remote sensing based yield 
model based on the DVI at the peak and the unmixing of the 
wheat signal. The model is efficient in responding to 
extreme conditions (high and low yields) with good 
correlation and good accuracy (error < 7%) at national level 
both in the US and Ukraine. The model provides also good 
results (error < 15%) at subnational level in the major wheat 
producing oblasts/states. 
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